Volume 12, Issue 4 (2024)                   Health Educ Health Promot 2024, 12(4): 649-660 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ayaad O, Ibrahim R, AlBaimani K, AlGhaithi M, Sawaya Z, AlHasni N, et al . Predicting and Classifying the Perceptions of Learning Needs Importance in Cancer Patients; a Machine Learning Approach. Health Educ Health Promot 2024; 12 (4) :649-660
URL: http://hehp.modares.ac.ir/article-5-77715-en.html
1- Quality and Accreditation Department, Sultan Qaboos Comprehensive Cancer Care and Research Centre (SQCCCRC), University Medical City, Muscat, Oman
2- Sultan Qaboos Comprehensive Cancer Care and Research Centre (SQCCCRC), Muscat, Oman
3- Nursing Department, Sultan Qaboos Comprehensive Cancer Care and Research Centre (SQCCCRC), University Medical City, Muscat, Oman
4- Holistic Care Department, Sultan Qaboos Comprehensive Cancer Care and Research Centre (SQCCCRC), University Medical City, Muscat, Oman
5- Pharmacy Department, National Hematology and Bone Marrow Transplant Center, University Medical City, Muscat, Oman
Abstract:   (674 Views)
Aims: Artificial intelligence (AI) and machine learning (ML) are revolutionizing healthcare by enhancing the prediction of learning needs and enabling tailored educational interventions for patients and staff. This study explores the application of AI and ML models to predict learning needs from the patient's perspective.
Instruments & Methods: Three ML models (Linear Regression, Random Forest, and Gradient Boosting) were trained on health literacy, demographic, and treatment data from 218 cancer patients at Sultan Qaboos Comprehensive Cancer Center. Evaluation metrics included Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), R2 Score, and Area Under the Curve (AUC). Classification models (Random Forest, Gradient Boosting, Decision Tree, and Extra Trees) were assessed for accuracy, precision, recall, F1-score, and AUC in categorizing learning needs.
Findings: Gradient Boosting had the best predictive performance (MAE:0.0534, RMSE: 0.0788, R²:0.9844, AUC:0.96), followed by Random Forest (AUC:0.93). Linear Regression was less effective (AUC: 0.85). Key predictors included literacy level in chemotherapy, hormonal therapy, and treatment experiences, while demographic factors had minimal impact. For classification, Gradient Boosting and Decision Tree models achieved the highest accuracy (96.51%) and AUC (0.96). Random Forest showed 94.19% accuracy, while Extra Trees had 90.70%, indicating variability in model performance.
Conclusion: AI and ML, particularly Gradient Boosting, demonstrate strong potential in predicting and categorizing learning needs.
Full-Text [PDF 1121 kb]   (1751 Downloads) |   |   Full-Text (HTML)  (30 Views)  
Article Type: Original Research | Subject: Health Literacy
Received: 2024/10/28 | Accepted: 2024/12/1 | Published: 2024/12/12
* Corresponding Author Address: Sultan Qaboos Comprehensive Cancer Care and Research Centre (SQCCCRC), University Medical City, SQU Street, Al Khoud, Muscat, Oman. Postal Code: 113 (o.ayaad@cccrc.gov.om)

References
1. Herdian C, Widianto S, Ginting JA, Geasela YM, Sutrisno J. The use of feature engineering and hyperparameter tuning for machine learning accuracy optimization: A case study on heart disease prediction. In: Chakir A, Andry J.F, Ullah A, Bansal R, Ghazouani M, editors. Engineering Applications of Artificial Intelligence. Synthesis Lectures on Engineering, Science, and Technology. Berlin: Springer; 2024. P. 193-218. [Link] [DOI:10.1007/978-3-031-50300-9_11]
2. Ayaad O. The implications of artificial intelligence in the quality of health services. Innov Multidiscip J Sci Technol. 2024;1(1):1-9. [Link]
3. Kaur H, Singh H, Verma K. Using machine learning to predict patient health outcomes. Proceedings of the 14th International Conference on Computing Communication and Networking Technologies. Delhi: IEEE; 2023. [Link] [DOI:10.1109/ICCCNT56998.2023.10307275]
4. Nguyen DK, Lan CH, Chan CL. Deep ensemble learning approaches in healthcare to enhance the prediction and diagnosing performance: The workflows, deployments, and surveys on the statistical, image-based, and sequential datasets. Int J Environ Res Public Health. 2021;18(20):10811. [Link] [DOI:10.3390/ijerph182010811]
5. Sunny MNM, Saki MBH, Al Nahian A, Ahmed SW, Shorif MN, Atayeva J, Rizvi SWA. Optimizing healthcare outcomes through data-driven predictive modeling. J Intell Learn Syst Appl. 2024;16(4):384-402. [Link] [DOI:10.4236/jilsa.2024.164019]
6. Ravaut M, Sadeghi H, Leung KK, Volkovs M, Kornas K, Harish V, et al. Predicting adverse outcomes due to diabetes complications with machine learning using administrative health data. NPJ Digit Med. 2021;4(1):24. [Link] [DOI:10.1038/s41746-021-00394-8]
7. Van Mens K, Lokkerbol J, Wijnen B, Janssen R, De Lange R, Tiemens B. Predicting undesired treatment outcomes with machine learning in mental health care: Multisite study. JMIR Med Inform. 2023;11:e44322. [Link] [DOI:10.2196/44322]
8. Hornstein S, Forman-Hoffman V, Nazander A, Ranta K, Hilbert K. Predicting therapy outcome in a digital mental health intervention for depression and anxiety: A machine learning approach. Digit Health. 2021;7:20552076211060659. [Link] [DOI:10.1177/20552076211060659]
9. Heo J, Yoon JG, Park H, Kim YD, Nam HS, Heo JH. Machine learning-based model for prediction of outcomes in acute stroke. Stroke. 2019;50(5):1263-5. [Link] [DOI:10.1161/STROKEAHA.118.024293]
10. Cardosi JD, Shen H, Groner JI, Armstrong M, Xiang H. Machine learning for outcome predictions of patients with trauma during emergency department care. BMJ Health Care Inform. 2021;28(1):e100407. [Link] [DOI:10.1136/bmjhci-2021-100407]
11. Jauk S, Kramer D, Großauer B, Rienmüller S, Avian A, Berghold A, et al. Risk prediction of delirium in hospitalized patients using machine learning: An implementation and prospective evaluation study. J Am Med Inform Assoc. 2020;27(9):1383-92. [Link] [DOI:10.1093/jamia/ocaa113]
12. Wolff J, Gary A, Jung D, Normann C, Kaier K, Binder H, et al. Predicting patient outcomes in psychiatric hospitals with routine data: A machine learning approach. BMC Med Inform Decis Mak. 2020;20(1):21. [Link] [DOI:10.1186/s12911-020-1042-2]
13. Tajgardoon M, Samayamuthu MJ, Calzoni L, Visweswaran S. Patient-specific explanations for predictions of clinical outcomes. ACI Open. 2019;3(2):e88-97. [Link] [DOI:10.1055/s-0039-1697907]
14. Pfob A, Mehrara BJ, Nelson JA, Wilkins EG. Towards patient-centered decision-making in breast cancer surgery: Machine learning to predict individual patient-reported outcomes at 1-year follow-up. Ann Surg. 2023;277(1):1-9. [Link] [DOI:10.1097/SLA.0000000000004862]
15. Turkki R, Byckhov D, Lundin M, Isola J, Nordling S, Kovanen PE, et al. Breast cancer outcome prediction with tumour tissue images and machine learning. Breast Cancer Res Treat. 2019;177(1):41-52. [Link] [DOI:10.1007/s10549-019-05281-1]
16. Senders JT, Staples PC, Karhade AV, Zaki MM, Gormley WB, Broekman MLD, et al. Machine learning and neurosurgical outcome prediction: A systematic review. World Neurosurg. 2018;109:476-86. [Link] [DOI:10.1016/j.wneu.2017.09.149]
17. Tavousi M, Haeri-Mehrizi A, Rakhshani F, Rafiefar S, Soleymanian A, Sarbandi F, et al. Development and validation of a short and easy-to-use instrument for measuring health literacy: The health literacy instrument for adults (HELIA). BMC Public Health. 2020;20(1):656. [Link] [DOI:10.1186/s12889-020-08787-2]
18. Chua GP, Tan HK, Gandhi M. What information do cancer patients want and how well are their needs being met?. Ecancermedicalscience. 2018;12:873. [Link] [DOI:10.3332/ecancer.2018.873]
19. Ayaad O, Ibrahim R, AlHasni NS, Salman BM, Sawaya ZG, Al Zadjali R, et al. Assessing health literacy, learning needs, and patient satisfaction in cancer care: A holistic study in the Omani context. Asian Pac J Cancer Biol. 2024;9(4):553-60. [Link] [DOI:10.31557/apjcb.2024.9.4.553-560]
20. Qaddumi B. The relationship between factors, the use of electronic collaborative tools, and team effectiveness. Int J Art Soc Manag Sci. 2024;1(1):32-9. [Link]
21. Pothugunta KP, Liu X, Susarla A, Padman R. Classifying actionable information in videos using HST-CAT: Hybrid spatiotemporal cross-attention transformer. Proceedings of the International Conference on Information Systems. London: ICIS; 2024. [Link]
22. Keikhosrokiani P, Isomursu M, Uusimaa J, Kortelainen J. A sustainable artificial-intelligence-augmented digital care pathway for epilepsy: Automating seizure tracking based on electroencephalogram data using artificial intelligence. Digit Health. 2024;10:20552076241287356. [Link] [DOI:10.1177/20552076241287356]
23. Qaddumi B, Alshoaibi M, Alkhazaleh D, Ayaad O. Harnessing artificial intelligence in business: A qualitative exploration of strategic implementation and organizational impact. Innov Multidiscip J Sci Technol. 2024;1(1):10-7. [Link]
24. Sharikh EA, Shannak R, Suifan T, Ayaad O. The impact of electronic medical records' functions on the quality of health services. Br J Healthc Manag. 2020;26(2):1-13. [Link] [DOI:10.12968/bjhc.2019.0056]
25. Al-Ruzzieh MA, Ayaad O, Qaddumi B. The role of e-health in improving control and management of COVID 19 outbreak: Current perspectives. Int J Adolesc Med Health. 2020;34(4):139-45. [Link] [DOI:10.1515/ijamh-2020-0072]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.