1. Herdian C, Widianto S, Ginting JA, Geasela YM, Sutrisno J. The use of feature engineering and hyperparameter tuning for machine learning accuracy optimization: A case study on heart disease prediction. In: Chakir A, Andry J.F, Ullah A, Bansal R, Ghazouani M, editors. Engineering Applications of Artificial Intelligence. Synthesis Lectures on Engineering, Science, and Technology. Berlin: Springer; 2024. P. 193-218. [
Link] [
DOI:10.1007/978-3-031-50300-9_11]
2. Ayaad O. The implications of artificial intelligence in the quality of health services. Innov Multidiscip J Sci Technol. 2024;1(1):1-9. [
Link]
3. Kaur H, Singh H, Verma K. Using machine learning to predict patient health outcomes. Proceedings of the 14th International Conference on Computing Communication and Networking Technologies. Delhi: IEEE; 2023. [
Link] [
DOI:10.1109/ICCCNT56998.2023.10307275]
4. Nguyen DK, Lan CH, Chan CL. Deep ensemble learning approaches in healthcare to enhance the prediction and diagnosing performance: The workflows, deployments, and surveys on the statistical, image-based, and sequential datasets. Int J Environ Res Public Health. 2021;18(20):10811. [
Link] [
DOI:10.3390/ijerph182010811]
5. Sunny MNM, Saki MBH, Al Nahian A, Ahmed SW, Shorif MN, Atayeva J, Rizvi SWA. Optimizing healthcare outcomes through data-driven predictive modeling. J Intell Learn Syst Appl. 2024;16(4):384-402. [
Link] [
DOI:10.4236/jilsa.2024.164019]
6. Ravaut M, Sadeghi H, Leung KK, Volkovs M, Kornas K, Harish V, et al. Predicting adverse outcomes due to diabetes complications with machine learning using administrative health data. NPJ Digit Med. 2021;4(1):24. [
Link] [
DOI:10.1038/s41746-021-00394-8]
7. Van Mens K, Lokkerbol J, Wijnen B, Janssen R, De Lange R, Tiemens B. Predicting undesired treatment outcomes with machine learning in mental health care: Multisite study. JMIR Med Inform. 2023;11:e44322. [
Link] [
DOI:10.2196/44322]
8. Hornstein S, Forman-Hoffman V, Nazander A, Ranta K, Hilbert K. Predicting therapy outcome in a digital mental health intervention for depression and anxiety: A machine learning approach. Digit Health. 2021;7:20552076211060659. [
Link] [
DOI:10.1177/20552076211060659]
9. Heo J, Yoon JG, Park H, Kim YD, Nam HS, Heo JH. Machine learning-based model for prediction of outcomes in acute stroke. Stroke. 2019;50(5):1263-5. [
Link] [
DOI:10.1161/STROKEAHA.118.024293]
10. Cardosi JD, Shen H, Groner JI, Armstrong M, Xiang H. Machine learning for outcome predictions of patients with trauma during emergency department care. BMJ Health Care Inform. 2021;28(1):e100407. [
Link] [
DOI:10.1136/bmjhci-2021-100407]
11. Jauk S, Kramer D, Großauer B, Rienmüller S, Avian A, Berghold A, et al. Risk prediction of delirium in hospitalized patients using machine learning: An implementation and prospective evaluation study. J Am Med Inform Assoc. 2020;27(9):1383-92. [
Link] [
DOI:10.1093/jamia/ocaa113]
12. Wolff J, Gary A, Jung D, Normann C, Kaier K, Binder H, et al. Predicting patient outcomes in psychiatric hospitals with routine data: A machine learning approach. BMC Med Inform Decis Mak. 2020;20(1):21. [
Link] [
DOI:10.1186/s12911-020-1042-2]
13. Tajgardoon M, Samayamuthu MJ, Calzoni L, Visweswaran S. Patient-specific explanations for predictions of clinical outcomes. ACI Open. 2019;3(2):e88-97. [
Link] [
DOI:10.1055/s-0039-1697907]
14. Pfob A, Mehrara BJ, Nelson JA, Wilkins EG. Towards patient-centered decision-making in breast cancer surgery: Machine learning to predict individual patient-reported outcomes at 1-year follow-up. Ann Surg. 2023;277(1):1-9. [
Link] [
DOI:10.1097/SLA.0000000000004862]
15. Turkki R, Byckhov D, Lundin M, Isola J, Nordling S, Kovanen PE, et al. Breast cancer outcome prediction with tumour tissue images and machine learning. Breast Cancer Res Treat. 2019;177(1):41-52. [
Link] [
DOI:10.1007/s10549-019-05281-1]
16. Senders JT, Staples PC, Karhade AV, Zaki MM, Gormley WB, Broekman MLD, et al. Machine learning and neurosurgical outcome prediction: A systematic review. World Neurosurg. 2018;109:476-86. [
Link] [
DOI:10.1016/j.wneu.2017.09.149]
17. Tavousi M, Haeri-Mehrizi A, Rakhshani F, Rafiefar S, Soleymanian A, Sarbandi F, et al. Development and validation of a short and easy-to-use instrument for measuring health literacy: The health literacy instrument for adults (HELIA). BMC Public Health. 2020;20(1):656. [
Link] [
DOI:10.1186/s12889-020-08787-2]
18. Chua GP, Tan HK, Gandhi M. What information do cancer patients want and how well are their needs being met?. Ecancermedicalscience. 2018;12:873. [
Link] [
DOI:10.3332/ecancer.2018.873]
19. Ayaad O, Ibrahim R, AlHasni NS, Salman BM, Sawaya ZG, Al Zadjali R, et al. Assessing health literacy, learning needs, and patient satisfaction in cancer care: A holistic study in the Omani context. Asian Pac J Cancer Biol. 2024;9(4):553-60. [
Link] [
DOI:10.31557/apjcb.2024.9.4.553-560]
20. Qaddumi B. The relationship between factors, the use of electronic collaborative tools, and team effectiveness. Int J Art Soc Manag Sci. 2024;1(1):32-9. [
Link]
21. Pothugunta KP, Liu X, Susarla A, Padman R. Classifying actionable information in videos using HST-CAT: Hybrid spatiotemporal cross-attention transformer. Proceedings of the International Conference on Information Systems. London: ICIS; 2024. [
Link]
22. Keikhosrokiani P, Isomursu M, Uusimaa J, Kortelainen J. A sustainable artificial-intelligence-augmented digital care pathway for epilepsy: Automating seizure tracking based on electroencephalogram data using artificial intelligence. Digit Health. 2024;10:20552076241287356. [
Link] [
DOI:10.1177/20552076241287356]
23. Qaddumi B, Alshoaibi M, Alkhazaleh D, Ayaad O. Harnessing artificial intelligence in business: A qualitative exploration of strategic implementation and organizational impact. Innov Multidiscip J Sci Technol. 2024;1(1):10-7. [
Link]
24. Sharikh EA, Shannak R, Suifan T, Ayaad O. The impact of electronic medical records' functions on the quality of health services. Br J Healthc Manag. 2020;26(2):1-13. [
Link] [
DOI:10.12968/bjhc.2019.0056]
25. Al-Ruzzieh MA, Ayaad O, Qaddumi B. The role of e-health in improving control and management of COVID 19 outbreak: Current perspectives. Int J Adolesc Med Health. 2020;34(4):139-45. [
Link] [
DOI:10.1515/ijamh-2020-0072]