1. Peeri NC, Shrestha N, Rahman MS, Zaki R, Tan Z, Bibi S, et al. The SARS, MERS and novel coronavirus (COVID-19) epidemics, the newest and biggest global health threats: What lessons have we learned. Int J Epidemiol. 2020;49(3):717-26. [
Link] [
DOI:10.1093/ije/dyaa033] [
PMID] [
PMCID]
2. Qiu H, Wu J, Hong L, Luo Y, Song Q, Chen D. Clinical and epidemiological features of 36 children with coronavirus disease 2019 (COVID-19) in Zhejiang, China: An observational cohort study. Lancet Infect Dis. 2020;20(6):689-96. [
Link] [
DOI:10.1016/S1473-3099(20)30198-5]
3. Shi H, Han X, Jiang N, Cao Y, Alwalid O, Gu J, et al. Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: A descriptive study. Lancet Infect Dis. 2020;20(4):425-34. [
Link] [
DOI:10.1016/S1473-3099(20)30086-4]
4. Zhao Z, Chen A, Hou W, Graham JM, Li H, Richman PS, et al. Prediction model and risk scores of ICU admission and mortality in COVID-19. Plos One. 2020;15(7):0236618. [
Link] [
DOI:10.1371/journal.pone.0236618] [
PMID] [
PMCID]
5. Hu H, Yao N, Qiu Y. Comparing rapid scoring systems in mortality prediction of critically ill patients with novel coronavirus disease. Acad Emerg Med. 2020;27(6):461-8. [
Link] [
DOI:10.1111/acem.13992] [
PMID] [
PMCID]
6. Gao Y, Cai G, Fang W, Li HY, Wang SY, Chen L, et al. Machine learning based early warning system enables accurate mortality risk prediction for COVID-19. Nat Commun. 2020;11(1):1-10. [
Link] [
DOI:10.1038/s41467-020-18684-2] [
PMID] [
PMCID]
7. Das AK, Mishra S, Gopalan SS. Predicting CoVID-19 community mortality risk using machine learning and development of an online prognostic tool. PeerJ. 2020;8:10083. [
Link] [
DOI:10.7717/peerj.10083] [
PMID] [
PMCID]
8. Cascella M, Rajnik M, Cuomo A, Dulebohn SC, Di Napoli R. Features, evaluation and treatment coronavirus (COVID-19). Statpearls. 2020; 3(8):8-17. [
Link]
9. Sohrabi C, Alsafi Z, O'Neill N, Khan M, Kerwan A, Al-Jabir A, et al. World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19). Int J Surg. 2020;76:71-6. [
Link] [
DOI:10.1016/j.ijsu.2020.02.034] [
PMID] [
PMCID]
10. Yan L, Zhang HT, Goncalves J, Xiao Y, Wang M, Guo Y, et al. An interpretable mortality prediction model for COVID-19 patients. Nat Mach Intell. 2020;2(5):1-6. [
Link] [
DOI:10.1038/s42256-020-0180-7]
11. Malki Z, Atlam ES, Hassanien AE, Dagnew G, Elhosseini MA, Gad I. Association between weather data and COVID-19 pandemic predicting mortality rate: Machine learning approaches. Chaos Solitons Fractals. 2020;138:110137. [
Link] [
DOI:10.1016/j.chaos.2020.110137] [
PMID] [
PMCID]
12. Shanbehzadeh M, Nopour R, Kazemi-Arpanahi H. Comparison of four data mining algorithms for predicting colorectal cancer risk. J Adv Med Biomed Res. 2021;29(133):100-8. [Persian] [
Link] [
DOI:10.30699/jambs.29.133.100]
13. Wynants L, Van Calster B, Collins GS, Riley RD, Heinze G, Schuit E, et al. Prediction models for diagnosis and prognosis of covid-19: Systematic review and critical appraisal. BMJ. 2020;369:1328. [
Link] [
DOI:10.1136/bmj.m1328] [
PMID] [
PMCID]
14. Wu G, Yang P, Xie Y, Woodruff HC, Rao X, Guiot J, et al. Development of a clinical decision support system for severity risk prediction and triage of COVID-19 patients at hospital admission: An international multicentre study. Eur Respir J. 2020;56(2):2001104. [
Link] [
DOI:10.1183/13993003.01104-2020] [
PMID] [
PMCID]
15. Mei X, Lee HC, Diao KY, Huang M, Lin B, Liu C, et al. Artificial intelligence-enabled rapid diagnosis of patients with COVID-19. Nat Med. 2020;26(8):1224-8. [
Link] [
DOI:10.1038/s41591-020-0931-3] [
PMID] [
PMCID]
16. Chin V, Samia NI, Marchant R, Rosen O, Ioannidis JP, Tanner MA, et al. A case study in model failure? COVID-19 daily deaths and ICU bed utilisation predictions in New York state. Eur J Epidemiol. 2020;35(8):733-42. [
Link] [
DOI:10.1007/s10654-020-00669-6] [
PMID] [
PMCID]
17. Booth AL, Abels E, McCaffrey P. Development of a prognostic model for mortality in COVID-19 infection using machine learning. Mod Pathol. 2021;34(3):522-31. [
Link] [
DOI:10.1038/s41379-020-00700-x] [
PMID] [
PMCID]
18. Yadaw AS, Li YC, Bose S, Iyengar PR, Bunyavanich S, Pandey G. Clinical features of COVID-19 mortality: development and validation of a clinical prediction model. Lancet Digital Health. 2020;2(10):516-25. [
Link] [
DOI:10.1016/S2589-7500(20)30217-X]
19. Allenbach Y, Saadoun D, Maalouf G, Vieira M, Hellio A, Boddaert J, et al. Development of a multivariate prediction model of intensive care unit transfer or death: A French prospective cohort study of hospitalized COVID-19 patients. Plos One. 2020;15(10):0240711. [
Link] [
DOI:10.1371/journal.pone.0240711] [
PMID] [
PMCID]
20. Zhou Y, He Y, Yang H, Yu H, Wang T, Chen Z, et al. Exploiting an early warning Nomogram for predicting the risk of ICU admission in patients with COVID-19: A multi-center study in China. Scandinavian J Trauma Resusc Emerg Med. 2020;28(1):106. [
Link] [
DOI:10.1186/s13049-020-00795-w] [
PMID] [
PMCID]
21. Ryan L, Lam C, Mataraso S, Allen A, Green-Saxena A, Pellegrini E, et al. Mortality prediction model for the triage of COVID-19, pneumonia, and mechanically ventilated ICU patients: A retrospective study. Ann Med Surg. 2020;59:207-16. [
Link] [
DOI:10.1016/j.amsu.2020.09.044] [
PMID] [
PMCID]
22. Agieb RS. Machine learning models for the prediction the necessity of resorting to icu of COVID-19 patients. Int J Adv Trends Computer Sci Eng. 2020;9(5):6980-4. [
Link] [
DOI:10.30534/ijatcse/2020/15952020]
23. Pan P, Li Y, Xiao Y, Han B, Su L, Su M, et al. Prognostic assessment of covid-19 in the intensive care unit by machine learning methods: Model development and validation. J Med Internet Res. 2020;22(11):23128. [
Link] [
DOI:10.2196/23128] [
PMID] [
PMCID]
24. Assaf D, Gutman Y, Neuman Y, Segal G, Amit S, Gefen-Halevi S, et al. Utilization of machine-learning models to accurately predict the risk for critical COVID-19. Intern Emerg Med. 2020;15(8):1435-43. [
Link] [
DOI:10.1007/s11739-020-02475-0] [
PMID] [
PMCID]
25. Foieni F, Sala G, Mognarelli JG, Suigo G, Zampini D, Pistoia M, et al. Derivation and validation of the clinical prediction model for COVID-19. Intern Emerg Med. 2020;15(8):1409-14. [
Link] [
DOI:10.1007/s11739-020-02480-3] [
PMID] [
PMCID]
26. Zhang Y, Xin Y, Li Q, Ma J, Li S, Lv X, et al. Empirical study of seven data mining algorithms on different characteristics of datasets for biomedical classification applications. Biomed Eng Online. 2017;16(1):125. [
Link] [
DOI:10.1186/s12938-017-0416-x] [
PMID] [
PMCID]