Volume 9, Issue 5 (2021)                   Health Educ Health Promot 2021, 9(5): 487-499 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Karmanovskaya N, Nosova O, Kaverzin A. Public Environmental Monitoring of the State of Snowpack in Norilsk. Health Educ Health Promot 2021; 9 (5) :487-499
URL: http://hehp.modares.ac.ir/article-5-55986-en.html
1- Department of Non-Ferrous Metallurgy; Department of Graduate Studies and Scientific Research, Norilsk State Industrial Institute, Norilsk, Russian Federation , karmanovskaya6140@nuos.pro
2- Department of Non-Ferrous Metallurgy, Norilsk State Industrial Institute, Norilsk, Russian Federation
Abstract:   (512 Views)
Aims: This study aimed to analyse the snow cover in the Norilsk industrial region and assess the state of atmospheric air in the winter.
Materials & Methods: This experimental study was conducted in 2019. The organoleptic method was used for determining quality indicators based on the analysis of sensory perception; sight, smell, hearing, touch, taste.
Findings: Norilsk ranks second in terms of atmospheric contamination. Industrial enterprises annually emit large amounts of sulphur dioxide, phenols, and heavy metal particles. The city is located within the Far North and is distinguished by the harsh climate of the subarctic type. The snow cover can lie from 244 to 277 days. Snow is a good sorbent; therefore, the snow cover accumulates solid and gaseous pollutants that enter it from the atmosphere with precipitation or are absorbed from it.
Conclusion: Heavy metal ions and sulphate ions are not detected in the thawed snow, so no industrial gas pollution is noted in the residential area. Most of the particulate contamination is caused by slagging of roads to improve vehicle traction.
Full-Text [PDF 1130 kb]   (737 Downloads) |   |   Full-Text (HTML)  (207 Views)  
Article Type: Original Research | Subject: Social Health
Received: 2021/09/29 | Accepted: 2021/11/16 | Published: 2022/01/29
* Corresponding Author Address: Department of Non-Ferrous Metallurgy; Department of Graduate Studies and Scientific Research, Norilsk State Industrial Institute, 663310, Norilsk, Russian Federation

References
1. Кодекс. GOST R 57164-2016: Drinking water: Methods for the determination of odour, taste and turbidity. Кодекс; 2018. [cited 2021 July 15]. Available from: https://docs.cntd.ru/document/1200140391. [Russian] [Link]
2. Vasiliev VP. Analytical chemistry. Vasiliev VP. Titrimetric and gravimetric methods of analysis. Moscow: Drofa; 2005. [Russian] [Link]
3. Кодекс. GOST R 52407-2005: Drinking water: Methods for determining hardness. Кодекс; 2007 [cited 2021 July 15]. Available from: http://docs.cntd.ru/document/1200042882. [Russian] [Link]
4. Кодекс. GOST 31865-2012: Water: Stiffness unit. Кодекс; 2019 [cited 2021 July 15]. Available from: http://protect.gost.ru/document.aspx?control=7&id=181004. [Russian] [Link]
5. Kharitonov YuYa. Analytical chemistry. Moscow: Vysshaya Shkola; 2003. [Russian] [Link]
6. Zolotov YuYa. Fundamentals of analytical chemistry. Moscow: Vysshaya Shkola; 2001. [Russian] [Link]
7. Lebedev SV, Agafonova EK. Ecogeochemical estimation of environmental pollution by monitoring data of heavy metals contamination in soil and snow cover (at the example of Vasileostrovsky district of Saint Petersburg). Vestnik St Petersburg Univ Earth Sci. 2017;62(4):357-69. [Russian] [Link] [DOI:10.21638/11701/spbu07.2017.403]
8. Collados-Lara AJ, Pulido-Velazquez D, Pardo-Igúzquiza E, Alonso-González E. Estimation of the spatiotemporal dynamic of snow water equivalent at mountain range scale under data scarcity. Sci Total Env. 2020;741:140485. [Link] [DOI:10.1016/j.scitotenv.2020.140485] [PMID]
9. Kim Y, Kodama YB, Fochesatto GJ. Environmental factors regulating winter CO2 flux in snow-covered black forest soil of Interior Alaska. Geochem J. 2017;51(4):359-71. [Link] [DOI:10.2343/geochemj.2.0475]
10. Levshina S. Distribution and Characteristic of PAHs in snow of the Urban and reserve areas of southern far east Russia. Bull Environ Contam Toxicol. 2019;102(5):160-7. [Link] [DOI:10.1007/s00128-018-02533-6] [PMID]
11. Mortazavi R, Attiya S, Ariya PA. Diversity of metals and metal-interactive bacterial populations in different types of Arctic snow and frost flowers: Implications on snow freeze-melt processes in a changing climate. Sci Total Env. 2019;690:277-89. [Link] [DOI:10.1016/j.scitotenv.2019.06.350] [PMID]
12. Pashayan SA, Sindireva AV, Boev VA. Features of accumulation of trace elements in the soil-honey plants system in the Tyumen region. IOP Conf Ser Earth Env Sci. 2020;548:062044. [Link] [DOI:10.1088/1755-1315/548/6/062044]
13. Romasko VYu, Burakov DA. Monitoring of snow cover of river watersheds. CEUR Workshop Proceed. 2017;2033:220-4. [Russian] [Link]
14. Liu J, Zhang W, Liu T. Monitoring recent changes in snow cover in Central Asia using improved MODIS snow-cover products. J Arid Land. 2017;9:763-77. [Link] [DOI:10.1007/s40333-017-0103-6]
15. Fedonyuk L, Pryvrotska I, Rujytska O. Ecological features, distribution and epidemiological significance of family ixodidae ticks. Sci Horiz. 2019;11(84):121-9. [Link] [DOI:10.33249/2663-2144-2019-84-11-121-129]
16. Berlinets M. Environmental efficiency of post-harvest grain processing in combined photovoltaic / wind power systems. Sci Horiz. 2020;23(12):58-64. [Link] [DOI:10.48077/scihor.23(12).2020.58-64]
17. Küçük M, Findik F. Selected ecological settlements. Herit Sustain Dev. 2020;2(1):1-16. [Link] [DOI:10.37868/hsd.v2i1.35]
18. Ikanović M, Iseni M, Adilović M, Hromić-Jahjefendić A. The effect of active charcoal filter on viability of bacteria isolated from the tap water in Sarajevo. Herit Sustain Dev. 2020;2(2):100-7. [Link] [DOI:10.37868/hsd.v2i2.46]
19. Günes-Durak S. Investigation of microplastics removal methods from aquatic environments. Herit Sustain Dev. 2021;3(1):58-63. [Link] [DOI:10.37868/hsd.v3i1.56]
20. Bormann KJ, Westra S, Evans JP, McCabe MF. Spatial and temporal variability in seasonal snow density. J Hydrol. 2013;(484):63-73. [Link] [DOI:10.1016/j.jhydrol.2013.01.032]
21. Dai L, Che T, Wang J, Zhang P. Snow depth and snow water equivalent estimation from AMSR-E data based on a priori snow characteristics in Xinjiang, China. Remote Sens Environ. 2012;127:14-29. [Link] [DOI:10.1016/j.rse.2011.08.029]
22. Bormann KJ, McCabe MF, Evans JP. Satellite based observations for seasonal snow cover detection and characterisation in Australia. Remote Sens Environ. 2012;123:57-71. [Link] [DOI:10.1016/j.rse.2012.03.003]
23. Nayak A, Marks D, Chandler DG, Winstral A. Modeling interannual variability in snow-cover development and melt for a semiarid mountain catchment. J Hydrol Eng. 2011;17(1):74-84. [Link] [DOI:10.1061/(ASCE)HE.1943-5584.0000408]
24. Schöber J, Achleitner S, Bellinger J, Kirnbauer R, Schöberl F. Analysis and modelling of snow bulk density in the Tyrolean Alps. Hydrol Res. 2016;47(2):419-41. [Link] [DOI:10.2166/nh.2015.132]
25. Bernhardt M, Schulz K, Liston GE, Zängl G. The influence of lateral snow redistribution processes on snow melt and sublimation in alpine regions. J Hydrol. 2012;424-425:196-206. [Link] [DOI:10.1016/j.jhydrol.2012.01.001]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.