Volume 10, Issue 2 (2022)                   Health Educ Health Promot 2022, 10(2): 411-421 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Jasim O, Mahmood M, Ad'hiah A. Prevalence and Prediction of Prediabetes among Apparently Healthy Iraqis from Baghdad. Health Educ Health Promot 2022; 10 (2) :411-421
URL: http://hehp.modares.ac.ir/article-5-53715-en.html
1- Department of Biology, College of Science, Mustansiriyah University, Baghdad, Iraq
2- Tropical-Biological Research Unit, College of Science, University of Baghdad, Baghdad, Iraq
Abstract:   (1059 Views)
Aims: This study aimed to determine the prevalence of prediabetes and to evaluate the significance of six biomarkers, including neutrophil-to-lymphocyte ratio, high-sensitivity C-reactive protein, C-peptide, interleukin-1β, interleukin-13, and interleukin-35, in predicting prediabetes.
Material & Methods: A cross-sectional case-control study was performed to determine the prevalence of prediabetes among 735 healthy Iraqis. Besides, 125 prediabetes patients, 30 newly diagnosed diabetes mellitus cases, and 30 normoglycemic controls were assessed for the six biomarkers.
Findings: Among the 735 Iraqis, the prevalence of prediabetes was 17%. Most prediabetes patients were over the age of 40 and were overweight/obese. Median levels of the six biomarkers were significantly elevated in the serum of prediabetes and diabetes mellitus patients compared to the normoglycemic group. Receiver operating characteristic curve analysis showed that C-peptide scored the highest area under the curve in prediabetes (0.913), while in diabetes mellitus, C-reactive protein scored the highest area under the curve (0.961). Logistic regression analysis showed that only C-reactive protein, C-peptide, interleukin-1β, and interleukin-13 were associated with prediabetes risk, whereas in diabetes mellitus, the six biomarkers were associated with disease risk.
Conclusion: The prevalence of prediabetes among healthy Iraqis was 17%. Prediabetes was associated with ages over 40 and overweight/obesity. Pro-inflammatory and anti-inflammatory cytokines were up-regulated in the serum of prediabetes patients.
Full-Text [PDF 648 kb]   (1586 Downloads) |   |   Full-Text (HTML)  (732 Views)  
Article Type: Original Research | Subject: Health Promotion Setting
Received: 2021/04/29 | Accepted: 2022/06/11 | Published: 2022/06/15
* Corresponding Author Address: Tropical-Biological Research Unit, College of Science, University of Baghdad, Baghdad, Iraq. Postal Code: 10070 (dr.ahadhiah@sc.uobaghdad.edu.iq)

References
1. Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas. Diabetes Res Clin Pract. 2019;157:107843. [Link] [DOI:10.1016/j.diabres.2019.107843]
2. Mohammad A, Ziyab AH, Mohammad T. Prevalence of prediabetes and undiagnosed diabetes among kuwaiti adults: A cross-sectional study. Diabetes Metab Syndr Obes Targets Ther. 2021;14:2167-76. [Link] [DOI:10.2147/DMSO.S296848]
3. Hostalek U. Global epidemiology of prediabetes - present and future perspectives. Clin Diabetes Endocrinol. 2019;5:5. [Link] [DOI:10.1186/s40842-019-0080-0]
4. Echouffo-Tcheugui JB, Selvin E. Prediabetes and what it means: the epidemiological evidence. Annu Rev Public Health. 2021;42:59-77. [Link] [DOI:10.1146/annurev-publhealth-090419-102644]
5. Kaur G, Lakshmi PVM, Rastogi A, Bhansali A, Jain S, Teerawattananon Y, et al. Diagnostic accuracy of tests for type 2 diabetes and prediabetes: a systematic review and meta-analysis. PLoS One. 2020;15(11):e0242415. [Link] [DOI:10.1371/journal.pone.0242415]
6. Vatcheva KP, Fisher-Hoch SP, Reininger BM, McCormick JB. Sex and age differences in prevalence and risk factors for prediabetes in Mexican-Americans. Diabetes Res Clin Pract. 2020;159:107950. [Link] [DOI:10.1016/j.diabres.2019.107950]
7. Duman TT, Aktas G, Atak BM, Kocak MZ, Erkus E, Savli H. Neutrophil to lymphocyte ratio as an indicative of diabetic control level in type 2 diabetes mellitus. Afr Health Sci. 2019;19:1602-6. [Link] [DOI:10.4314/ahs.v19i1.35]
8. Wang JR, Chen Z, Yang K, Yang HJ, Tao WY, Li YP, et al. Association between neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio, and diabetic retinopathy among diabetic patients without a related family history. Diabetol Metab Syndr. 2020;12:1-10. [Link] [DOI:10.1186/s13098-020-00562-y]
9. Kamath DY, Xavier D, Sigamani A, Pais P. High sensitivity C-reactive protein (hsCRP) & cardiovascular disease: An Indian perspective. Indian J Med Res. 2015;142(3):261. [Link] [DOI:10.4103/0971-5916.166582]
10. Shin SH, Lee YJ, Lee YA, Kim JH, Lee SY, Shin CH. High-sensitivity C-reactive protein is associated with prediabetes and adiposity in Korean youth. Metab Syndr Relat Disord. 2020;18:47-55. [Link] [DOI:10.1089/met.2019.0076]
11. Ghule A, Kamble TK, Talwar D, Kumar S, Acharya S, Wanjari A, et al. Association of serum high sensitivity c-reactive protein with pre-diabetes in rural population: a two-year cross-sectional study. Cureus. 2021;13(10):e19088. [Link] [DOI:10.7759/cureus.19088]
12. Leighton E, Sainsbury CA, Jones GC. A practical review of C-peptide testing in diabetes. Diabetes Ther. 2017;8:475-87. [Link] [DOI:10.1007/s13300-017-0265-4]
13. Yin P, Shao P, Liu H, Li W, Wang L, Wang J, et al. C-peptide levels and the risk of diabetes and pre-diabetes among Chinese women with gestational diabetes. J Diabetes Complications. 2017;31(12):1658-62. [Link] [DOI:10.1016/j.jdiacomp.2017.08.006]
14. Shi J, Fan J, Su Q, Yang Z. Cytokines and abnormal glucose and lipid metabolism. Front Endocrinol. 2019;10:703. [Link] [DOI:10.3389/fendo.2019.00703]
15. Kaneko N, Kurata M, Yamamoto T, Morikawa S, Masumoto J. The role of interleukin-1 in general pathology. Inflamm Regen. 2019;39:12. [Link] [DOI:10.1186/s41232-019-0101-5]
16. Zhao G, Dharmadhikari G, Maedler K, Meyer-Hermann M. Possible role of Interleukin-1β in type 2 diabetes onset and implications for anti-inflammatory therapy strategies. PLoS Comput Biol. 2014;10:1003798. [Link] [DOI:10.1371/journal.pcbi.1003798]
17. Bharmal SH, Kimita W, Ko J, Petrov MS. Cytokine signature for predicting new-onset prediabetes after acute pancreatitis: A prospective longitudinal cohort study. Cytokine. 2022;150:155768. [Link] [DOI:10.1016/j.cyto.2021.155768]
18. Mao YM, Zhao CN, Leng J, Leng RX, Ye DQ, Zheng SG, et al. Interleukin-13: a promising therapeutic target for autoimmune disease. Cytokine Growth Factor Rev. 2019;45:9-23. [Link] [DOI:10.1016/j.cytogfr.2018.12.001]
19. Martínez-Reyes CP, Gómez-Arauz AY, Torres-Castro I, Manjarrez-Reyna AN, Palomera LF, Olivos-García A, et al. Serum levels of interleukin-13 increase in subjects with insulin resistance but do not correlate with markers of low-grade systemic inflammation. J Diabetes Res. 2018;2018. [Link] [DOI:10.1155/2018/7209872]
20. Brahimaj A, Ligthart S, Ghanbari M, Ikram MA, Hofman A, Franco OH, et al. Novel inflammatory markers for incident pre-diabetes and type 2 diabetes: the rotterdam study. Eur J Epidemiol. 2017;32:217-26. [Link] [DOI:10.1007/s10654-017-0236-0]
21. Song M, Ma X. The immunobiology of interleukin-35 and its regulation and gene expression. Regul Cytokine Gene Express Immun Diss. 2016;941:213-25. [Link] [DOI:10.1007/978-94-024-0921-5_10]
22. Lu J, Liu J, Li L, Lan Y, Liang Y. Cytokines in type 1 diabetes: mechanisms of action and immunotherapeutic targets. Clin Transl Immunol. 2020;9:e1122. [Link] [DOI:10.1002/cti2.1122]
23. Jiang Y, Wang J, Li H, Xia L. IL-35 alleviates inflammation progression in a rat model of diabetic neuropathic pain via inhibition of JNK signaling. J Inflamm. 2019;16:19. [Link] [DOI:10.1186/s12950-019-0217-z]
24. Maboudi A, Eghbalian-Nouzanizadeh A, Seifi H, Bahar A, Heidari M, Mohammadpour RA, et al. Serum levels of interleukin-23 and 35 in patients with and without type 2 diabetes mellitus and chronic periodontitis. Casp J Intern Med. 2019;10:295-302. [Link]
25. Galaviz KI, Narayan KMV, Lobelo F, Weber MB. Lifestyle and the prevention of type 2 diabetes: a status report. Am J Lifestyle Med. 2018;12:4-20. [Link] [DOI:10.1177/1559827615619159]
26. El-Kebbi IM, Bidikian NH, Hneiny L, Nasrallah MP. Epidemiology of type 2 diabetes in the Middle East and North Africa: Challenges and call for action. World J Diabetes. 2021;12:1401. [Link] [DOI:10.4239/wjd.v12.i9.1401]
27. Yip WCY, Sequeira IR, Plank LD, Poppitt SD. Prevalence of pre-diabetes across ethnicities: A review of impaired fasting glucose (IFG) and impaired glucose tolerance (IGT) for classification of dysglycaemia. Nutrients. 2017;9:1273. [Link] [DOI:10.3390/nu9111273]
28. Shang Y, Marseglia A, Fratiglioni L, Welmer AK, Wang R, Wang HX, et al. Natural history of prediabetes in older adults from a population-based longitudinal study. J Intern Med. 2019;286(3):326-40. [Link] [DOI:10.1111/joim.12920]
29. Tkatch R, Musich S, MacLeod S, Alsgaard K, Hawkins K, Yeh CS. Population health management for older adults: review of interventions for promoting successful aging across the health continuum. Gerontol Geriatr Med. 2016;2:2333721416667877. [Link] [DOI:10.1177/2333721416667877]
30. Batsis JA, Zagaria AB. Addressing obesity in aging patients. Med Clin North Am. 2018;102:65-85. [Link] [DOI:10.1016/j.mcna.2017.08.007]
31. Miao Z, Alvarez M, Ko A, Bhagat Y, Rahmani E, Jew B, et al. The causal effect of obesity on prediabetes and insulin resistance reveals the important role of adipose tissue in insulin resistance. PLoS Genet. 2020;16:e1009018. [Link] [DOI:10.1371/journal.pgen.1009018]
32. Gu Z, Zhu P, Wang Q, He H, Xu J, Zhang L, et al. Obesity and lipid-related parameters for predicting metabolic syndrome in Chinese elderly population. Lipids Health Dis. 2018;17:289. [Link] [DOI:10.1186/s12944-018-0927-x]
33. Ramírez-Vélez R, Pérez-Sousa MÁ, González-Ruíz K, Cano-Gutierrez CA, Schmidt-Riovalle J, Correa-Rodríguez M, et al. Obesity-and lipid-related parameters in the identification of older adults with a high risk of prediabetes according to the American diabetes association: An analysis of the. 2015 health, well-being, and aging study. Nutrients. 2019;11(11):2654. [Link] [DOI:10.3390/nu11112654]
34. Pan A, Wang Y, Yuan JM, Koh WP. High-sensitive C-reactive protein and risk of incident type 2 diabetes: A case-control study nested within the Singapore Chinese Health Study. BMC Endocr Disord. 2017;17:8. [Link] [DOI:10.1186/s12902-017-0159-5]
35. Sharif S, van der Graaf Y, Cramer MJ, Kapelle LJ, de Borst GJ, Visseren FLJ, et al. Low-grade inflammation as a risk factor for cardiovascular events and all-cause mortality in patients with type 2 diabetes. Cardiovasc Diabetol. 2021;20:220. [Link] [DOI:10.1186/s12933-021-01409-0]
36. Jamiołkowska-Sztabkowska M, Głowińska-Olszewska B, Bossowski A. C-peptide and residual β-cell function in pediatric diabetes-state of the art. Pediatr Endocrinol Diabetes Metab. 2021;27(2):123-33. [Link] [DOI:10.5114/pedm.2021.107165]
37. Jones AG, Hattersley AT. The clinical utility of C-peptide measurement in the care of patients with diabetes. Diabet Med. 2013;30(7):803-17. [Link] [DOI:10.1111/dme.12159]
38. Jung HS. Prediction of diabetes using serum C-peptide. Endocrinol Metab. 2016;31(2):275-6. [Link] [DOI:10.3803/EnM.2016.31.2.275]
39. Dinarello CA, Donath MY, Mandrup-Poulsen T. Role of IL-1β in type 2 diabetes. Curr Opin Endocrinol Diabetes Obes. 2010;17(4):314-21. [Link] [DOI:10.1097/MED.0b013e32833bf6dc]
40. Böni-Schnetzler M, Thorne J, Parnaud G, Marselli L, Ehses JA, Kerr-Conte J, et al. Increased interleukin (IL)-1β messenger ribonucleic acid expression in β-cells of individuals with type 2 diabetes and regulation of IL-1β in human islets by glucose and autostimulation. J Clin Endocrinol Metab. 2008;93(10):4065-74. [Link] [DOI:10.1210/jc.2008-0396]
41. Peiró C, Lorenzo Ó, Carraro R, Sánchez-Ferrer CF. IL-1β inhibition in cardiovascular complications associated to diabetes mellitus. Front Pharmacol. 2017;8:363. [Link] [DOI:10.3389/fphar.2017.00363]
42. Schulze F, Wehner J, Kratschmar D V, Makshana V, Meier DT, Häuselmann SP, et al. Inhibition of IL-1beta improves glycaemia in a mouse model for gestational diabetes. Sci Rep. 2020;10:3035. [Link] [DOI:10.1038/s41598-020-59701-0]
43. Randeria SN, Thomson GJA, Nell TA, Roberts T, Pretorius E. Inflammatory cytokines in type 2 diabetes mellitus as facilitators of hypercoagulation and abnormal clot formation. Cardiovasc Diabetol. 2019;18:72. [Link] [DOI:10.1186/s12933-019-0870-9]
44. Hasan Z, Irfan M, Masood Q, Ahmed O, Moosajee US, Rao S, et al. Raised levels of IFN-gamma and IL-13 are associated with pre-diabetes amongst newly diagnosed patients with tuberculosis. J Pak Med Assoc. 2019;69(4):468-73. [Link]
45. Møller M, Fredholm S, Jensen ME, Wörtwein G, Larsen JR, Vilsbøll T, et al. Proinflammatory biomarkers are associated with prediabetes in patients with schizophrenia. CNS Spectr. 2020;27(3):347-54. [Link] [DOI:10.1017/S1092852920002217]
46. Su LC, Liu XY, Huang AF, Xu WD. Emerging role of IL-35 in inflammatory autoimmune diseases. Autoimmun Rev. 2018;17(7):665-73. [Link] [DOI:10.1016/j.autrev.2018.01.017]
47. Filková M, Vernerová Z, Hulejová H, Prajzlerová K, Veigl D, Pavelka K, et al. Pro-inflammatory effects of interleukin-35 in rheumatoid arthritis. Cytokine. 2015;73(1):36-43. [Link] [DOI:10.1016/j.cyto.2015.01.019]
48. Cai Z, Wong CK, Kam NW, Dong J, Jiao D, Chu M, et al. Aberrant expression of regulatory cytokine IL-35 in patients with systemic lupus erythematosus. Lupus. 2015;24:1257-66. [Link] [DOI:10.1177/0961203315585815]
49. Rattik S, Engelbertsen D, Wigren M, Ljungcrantz I, Östling G, Persson M, et al. Elevated circulating effector memory T cells but similar levels of regulatory T cells in patients with type 2 diabetes mellitus and cardiovascular disease. Diabetes Vasc Dis Res. 2019;16:270-80. [Link] [DOI:10.1177/1479164118817942]
50. Gouda W, Mageed L, Abd El Dayem SM, Ashour E, Afify M. Evaluation of pro-inflammatory and anti-inflammatory cytokines in type 1 diabetes mellitus. Bull Natl Res Cent. 2018;42:14. [Link] [DOI:10.1186/s42269-018-0016-3]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.