Volume 7, Issue 2 (2019)                   Health Educ Health Promot 2019, 7(2): 59-63 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rashid-lamir A, Fazolahzade-Mousavi R, Mohammad Rahimi G. Effect of Eight Weeks of Aerobic Exercise on the Plasma Levels of Matrix Metalloproteinase in Life Guards: A Pilot Study. Health Educ Health Promot 2019; 7 (2) :59-63
URL: http://hehp.modares.ac.ir/article-5-15260-en.html
1- Exercise Physiology Department, Sport Sciences Faculty, Ferdowsi University of Mashhad, Mashhad, Iran , rashidlamir@um.ac.ir
2- Physical Education Department, Neyshabour Branch, Islamtic Azad University, Neyshabour, Iran
3- Exercise Physiology Department, Sport Sciences Faculty, Ferdowsi University of Mashhad, Mashhad, Iran
Abstract:   (6687 Views)
Aims: Matrix Metalloproteinases (MMPs) are a group of in charge of extracellular matrix decomposition. The present research aimed at investigating the effects of 8 weeks of aerobic training on MMP plasma levels in lifeguards.
Materials & Methods: This study was a quasi-experimental one with 19 volunteer participants who were randomly assigned to either the control group (n=8) or the experimental group (n=11). The latter did aerobic exercises in water for 8 weeks at 65 to 75% of their reserved heart rate. Fasting blood samples (10cc) were collected from the brachial vein before and after the training protocol. was determined by applying ELIZA (Enzyme-Linked Immunosorbent Assay) method and the data were analyzed using SPSS 16 software. The significance level was set at p<0.05.
Findings: Results showed a significant increase in MMP-2 level in the experimental group as compared to the control group.
Conclusion: Increasing MMP levels due to 8 weeks of aerobic exercise in water may play an important role in physiological functions and tissue homeostasis. It may indicate remodeling of muscle fibers and connective tissue.
 
Full-Text [PDF 432 kb]   (1872 Downloads)    
Article Type: Original Research | Subject: Health Care
Received: 2017/11/6 | Accepted: 2019/02/20 | Published: 2019/04/9
* Corresponding Author Address: Exercise Physiology Department, Sport Sciences Faculty, Ferdowsi University of Mashhad, Mashhad, Iran. Postal Code: 9177948979

References
1. Carmeli E, Moas M, Reznick AZ, Coleman R. Matrix metalloproteinases and skeletal muscle: A brief review. Muscle Nerve. 2004;29(2):191-7. [Link] [DOI:10.1002/mus.10529]
2. Kukačka J, Průša R, Kotaška K, Pelouch V. Matrix metalloproteinases and their function in myocardium. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2005;149(2):225-36. [Link] [DOI:10.5507/bp.2005.031]
3. Marqueti RC, Prestes J, Stotzer US, Paschoal M, Leite RD, Perez SE, et al. MMP-2, jumping exercise and nandrolone in skeletal muscle. Int J Sports Med. 2008;29(7):559-63. [Link] [DOI:10.1055/s-2007-989271]
4. Vincenti MP. The Matrix Metalloproteinase (MMP) and Tissue Inhibitor of Metalloproteinase (TIMP) genes. In: Clark IM, editor. Matrix metalloproteinase protocols, methods in molecular biology™. 151st Volume. New York City; Humana Press; 2001. pp. 121-48. [Link]
5. Firestein GS, Budd R, Gabriel SE, Mc Innes IB, O'Dell JR. Kelley's textbook of rheumatology. Amsterdam: Elsevier Health Sciences; 2012. 13- Koskinen SO, Wang W, Ahtikoski AM, Kjaer M, Han XY, Komulainen J, et al. Acute exercise induced changes in rat skeletal muscle mRNAs and proteins regulating type IV collagen content. Am J Physiol Regul Integr Comp Physiol. 2001;280(5):R1292-300. 15- Akbari H, Tartibian B, Amirsasan R. The effect of L-Carnitine supplementation on IL-6 and CRP during swimming training period in male swimmers. Olympic. 2010;17(4):93-102. [Persian] 17- Seidanloo F, Farzanegi P. Changes in matrix metallo-proteinases 2, 9 and Tissue Inhibitor of matrix metalloproteinase 1 to synchronized exercise training and celery, as an herbal supplement, in overweight women. Modares J Med Sci Pathobiol. 2015;18(1):107-18. [Persian] [Link]
6. Hornberger TA Jr, Farrar RP. Physiological hypertrophy of the FHL muscle following 8 weeks of progressive resistance exercise in the rat. Can J Appl Physiol. 2004;29(1):16-31. [Link] [DOI:10.1139/h04-002]
7. Chen X, Li Y. Role of matrix metalloproteinases in skeletal muscle: Migration, differentiation, regeneration and fibrosis. Cell Adh Migr. 2009;3(4):337-41 [Link] [DOI:10.4161/cam.3.4.9338]
8. Bouloumié A, Sengenès C, Portolan G, Galitzky J, Lafontan M. Adipocyte produces matrix metalloproteinases 2 and 9: Involvement in adipose differentiation. Diabetes. 2001;50(9):2080-6. [Link] [DOI:10.2337/diabetes.50.9.2080]
9. Carmeli E, Moas M, Lennon S, Powers SK. High intensity exercise increases expression of matrix metalloproteinases in fast skeletal muscle fibres. Exp Physiol. 2005;90(4):613-9. [Link] [DOI:10.1113/expphysiol.2004.029462]
10. Tayebjee MH, Lip GYH, Blann AD, Mac Fadyen RJ. Effects of age, gender, ethnicity, diurnal variation and exercise on circulating levels of Matrix Metalloproteinases (MMP)-2 and -9, and their inhibitors, Tissue Inhibitors of Matrix Metalloproteinases (TIMP)-1 and -2. Thromb Res. 2005;115(3):205-10. [Link] [DOI:10.1016/j.thromres.2004.08.023]
11. De Sousa Neto IV, Tibana RA, Da Cunha Nascimento D, Vieira DC, Durigan JL, Pereira GB, et al. Effects of resistance training volume on MMPs in circulation, muscle and adipose tissue. Int J Sports Med. 2017;38(4):307-13. [Link] [DOI:10.1055/s-0042-123192]
12. De Sousa Neto IV, Durigan JLQ, Guzzoni V, Tibana RA, Prestes J, Selistre De Araujo HS, et al. Effects of resistance training on matrix metalloproteinase activity in skeletal muscles and blood circulation during aging. Front Physiol. 2018;9:190. [Link] [DOI:10.3389/fphys.2018.00190]
13. Koskinen SO, Wang W, Ahtikoski AM, Kjaer M, Han XY, Komulainen J, et al. Acute exercise induced changes in rat skeletal muscle mRNAs and proteins regulating type IV collagen content. Am J Physiol Regul Integr Comp Physiol. 2001;280(5):R1292-300. [Link] [DOI:10.1152/ajpregu.2001.280.5.R1292]
14. Kherif S, Lafuma C, Dehaupas M, Lachkar S, Fournier JG, Verdière-Sahuqué M, et al. Expression of matrix metalloproteinases 2 and 9 in regenerating skeletal muscle: A study in experimentally injured and mdx muscles. Dev Biol. 1999;205(1):158-70. [Link] [DOI:10.1006/dbio.1998.9107]
15. Akbari H, Tartibian B, Amirsasan R. The effect of L-Carnitine supplementation on IL-6 and CRP during swimming training period in male swimmers. Olympic. 2010;17(4):93-102. [Persian] [Link]
16. Carmeli E, Haimovitch TG. The expression of MMP-2 following immobilization and high-intensity running in plantaris muscle fiber in rats. Sci World J. 2006;6:542-50. [Link] [DOI:10.1100/tsw.2006.107]
17. Seidanloo F, Farzanegi P. Changes in matrix metallo-proteinases 2, 9 and Tissue Inhibitor of matrix metalloproteinase 1 to synchronized exercise training and celery, as an herbal supplement, in overweight women. Modares J Med Sci Pathobiol. 2015;18(1):107-18. [Persian] [Link]
18. Niessner A, Richter B, Penka M, Steiner S, Strasser B, Ziegler S, et al. Endurance training reduces circulating inflammatory markers in persons at risk of coronary events: Impact on plaque stabilization?. Atherosclerosis. 2006;186(1):160-5. [Link] [DOI:10.1016/j.atherosclerosis.2005.06.047]
19. Silva FS, Bortolin RH, Araújo DN, Marques DES, Lima JPMS, Rezende AA, et al. Exercise training ameliorates matrix metalloproteinases 2 and 9 messenger RNA expression and mitigates adverse left ventricular remodeling in streptozotocin-induced diabetic rats. Cardiovasc Pathol. 2017;29:37-44. [Link] [DOI:10.1016/j.carpath.2017.05.003]
20. Van Den Boom R, Brama PA, Kiers GH, De Groot J, Barneveld A, Van Weeren RR. The influence of repeated arthrocentesis and exercise on matrix metalloproteinase and tumour necrosis factor alpha activities in normal equine joints. Equine Vet J. 2004;36(2):155-9. [Link] [DOI:10.2746/0425164044868602]
21. Koskinen SO, Heinemeier KM, Olesen JL, Langberg H, Kjaer M. Physical exercise can influence local levels of matrix metalloproteinases and their inhibitors in tendon-related connective tissue. J Appl Physiol (1985). 2004;96(3):861-4. [Link] [DOI:10.1152/japplphysiol.00489.2003]
22. Kjær M, Magnusson P, Krogsgaard M, Møller JB, Olesen J, Heinemeier K, et al. Extracellular matrix adaptation of tendon and skeletal muscle to exercise. J Anat. 2006;208(4):445-50. [Link] [DOI:10.1111/j.1469-7580.2006.00549.x]
23. Kjaer M. Role of extracellular matrix in adaptation of tendon and skeletal muscle to mechanical loading. Physiol Rev. 2004;84(2):649-98. [Link] [DOI:10.1152/physrev.00031.2003]
24. Koskinen SO, Kjær M, Mohr T, Sørensen FB, Suuronen T, Takala TE. Type IV collagen and its degradation in paralyzed human muscle: Effect of functional electrical stimulation. Muscle Nerve. 2000;23(4):580-9. https://doi.org/10.1002/(SICI)1097-4598(200004)23:4<580::AID-MUS18>3.0.CO;2-4 [Link] [DOI:10.1002/(SICI)1097-4598(200004)23:43.0.CO;2-4]
25. Koskinen SO, Höyhtyä M, Turpeenniemi-Hujanen T, Martikkala V, Mäkinen TT, Oksa J, et al. Serum concentrations of collagen degrading enzymes and their inhibitors after downhill running. Scand J Med Sci Sports. 2001;11(1):9-15. [Link] [DOI:10.1034/j.1600-0838.2001.011001009.x]
26. Kim J, Lee J. Matrix metalloproteinase and tissue inhibitor of metalloproteinase responses to muscle damage after eccentric exercise. J Exerc Rehabil. 2016;12(4):260-5. [Link] [DOI:10.12965/jer.1632640.320]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.