Volume 12, Issue 3 (2024)                   Health Educ Health Promot 2024, 12(3): 537-545 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mohammadi P, Noruzinia M, Ebadi M, Ghoraeian P. Identification of Blood Biomarkers for Veno-Occlusive Disease for Early Diagnosis and Enhancing Patients Quality of Life. Health Educ Health Promot 2024; 12 (3) :537-545
URL: http://hehp.modares.ac.ir/article-5-76901-en.html
1- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
2- Department of Medical Genetics, Faculty of Medicine, Tarbiat Modares University, Tehran, Iran
3- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
Abstract:   (428 Views)
Aims: Sinusoidal obstruction syndrome/veno-occlusive disease is a severe complication that can develop in up to 15% of adults following hematopoietic cell transplantation, resulting in congestion and damage due to the occlusion of small veins in the liver. This study aimed to identify novel blood biomarkers associated with veno-occlusive disease through bioinformatics analysis to improve early diagnosis and treatment outcomes.
Materials & Methods: This retrospective cohort study analyzed GSE164635 using R packages, specifically employing the affy package for data normalization before applying the Limma package for differential expression analysis in 2024. To identify significant miRNAs, a log fold change filter was set at greater than +1 or less than -1, with an adjusted p-value of less than 0.05. The multiMiR package was used to predict gene targets for the identified miRNAs, with data sourced from the mirTarBase and Tarbase databases. Pathway enrichment and gene ontology analyses of the common genes were performed using Funrich 3.1.3, and Cytoscape software was used to construct networks of commonly shared genes. Target gene prediction for these miRNAs was conducted using the multiMiR package in R, with data sourced from the mirTarBase and Tarbase databases.
Findings: Two upregulated miRNAs (hsa-miR-194-5p and hsa-miR-148a-3p) and two downregulated miRNAs (hsa-miR-342-3p and hsa-miR-150-5p) were identified. For the upregulated miRNAs, the network analysis revealed interactions with key genes, such as AGO2, CDKN1A, HSP90AA1, HSPA4, EP300, IGF1R, MYC, SMAD2, DICER1, and IL10. For the downregulated miRNAs, the interaction network identified significant genes, including EEF2, IGF1R, EP300, CCN2, DNMT1, SREBF1, CANX, ZEB1, SP1, and JUN.
Conclusion: The pathophysiology of VOD is greatly influenced by microRNAs, which play a crucial role in regulating inflammation, fibrosis, endothelial function, and cellular survival.
Full-Text [PDF 897 kb]   (1001 Downloads) |   |   Full-Text (HTML)  (73 Views)  
Article Type: Original Research | Subject: Health Communication
Received: 2024/09/7 | Accepted: 2024/10/20 | Published: 2024/10/30
* Corresponding Author Address: Department of Medical Genetics, Faculty of Medicine, Tarbiat Modares University, Jalal Al Ahmad Street, Tehran, Iran. P.O. Box: 141115-111 (noruzinia@modares.ac.ir)

References
1. Richardson PG, Ho VT, Cutler C, Glotzbecker B, Antin JH, Soiffer R. Hepatic veno-occlusive disease after hematopoietic stem cell transplantation: Novel insights to pathogenesis, current status of treatment, and future directions. Biol Blood Marrow Transplant. 2013;19(Suppl 1):S88-90. [Link] [DOI:10.1016/j.bbmt.2012.10.023]
2. Bonifazi F, Barbato F, Ravaioli F, Sessa M, Defrancesco I, Arpinati M, et al. Diagnosis and treatment of VOD/SOS after allogeneic hematopoietic stem cell transplantation. Front Immunol. 2020;11:489. [Link] [DOI:10.3389/fimmu.2020.00489]
3. Dalle JH, Giralt SA. Hepatic veno-occlusive disease after hematopoietic stem cell transplantation: Risk factors and stratification, prophylaxis, and treatment. Biol Blood Marrow Transplant. 2016;22(3):400-9. [Link] [DOI:10.1016/j.bbmt.2015.09.024]
4. Richardson PG, Ho VT, Giralt S, Arai S, Mineishi S, Cutler C, et al. Safety and efficacy of defibrotide for the treatment of severe hepatic veno-occlusive disease. Ther Adv Hematol. 2012;3(4):253-65. [Link] [DOI:10.1177/2040620712441943]
5. Lewis TC, Cortes J, Altshuler D, Papadopoulos J. Venous thromboembolism prophylaxis: A narrative review with a focus on the high-risk critically ill patient. J Intensive Care Med. 2019;34(11-12):877-88. [Link] [DOI:10.1177/0885066618796486]
6. Cutler C, Kim HT, Ayanian S, Bradwin G, Revta C, Aldridge J, et al. Prediction of veno-occlusive disease using biomarkers of endothelial injury. Biol Blood Marrow Transplant. 2010;16(8):1180-5. [Link] [DOI:10.1016/j.bbmt.2010.02.016]
7. Fitzpatrick E, Dhawan A. Noninvasive biomarkers in non-alcoholic fatty liver disease: Current status and a glimpse of the future. World J Gastroenterol. 2014;20(31):10851-63. [Link] [DOI:10.3748/wjg.v20.i31.10851]
8. Ladero JM. Noninvasive evaluation of liver fibrosis in patients with chronic hepatitis C. Hepat Mon. 2011;11(9):698-700. [Link] [DOI:10.5812/kowsar.173543X.738]
9. Weng JT, Wu LC, Chang WC, Chang TH, Akutsu T, Lee TY. Novel bioinformatics approaches for analysis of high-throughput biological data. Biomed Res Int. 2014;2014:814092. [Link] [DOI:10.1155/2014/814092]
10. Oh JH, Craft JM, Townsend R, Deasy JO, Bradley JD, El Naqa I. A bioinformatics approach for biomarker identification in radiation-induced lung inflammation from limited proteomics data. J Proteome Res. 2011;10(3):1406-15. [Link] [DOI:10.1021/pr101226q]
11. Pritzker KP, Pritzker LB. Bioinformatics advances for clinical biomarker development. Expert Opin Med Diagn. 2012;6(1):39-48. [Link] [DOI:10.1517/17530059.2012.634797]
12. Wang X, Zhang W, Yang Y, Chen Y, Zhuge Y, Xiong A, et al. Blood microRNA signatures serve as potential diagnostic biomarkers for hepatic sinusoidal obstruction syndrome caused by Gynura japonica containing pyrrolizidine alkaloids. Front Pharmacol. 2021;12:627126. [Link] [DOI:10.3389/fphar.2021.627126]
13. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47. [Link] [DOI:10.1093/nar/gkv007]
14. Ru Y, Kechris KJ, Tabakoff B, Hoffman P, Radcliffe RA, Bowler R, et al. The multiMiR R package and database: Integration of microRNA-target interactions along with their disease and drug associations. Nucleic Acids Res. 2014;42(17):e133. [Link] [DOI:10.1093/nar/gku631]
15. Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, Lin CY. CytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Syst Biol. 2014;8 Suppl 4(Suppl 4):S11. [Link] [DOI:10.1186/1752-0509-8-S4-S11]
16. Cui C, Zhong B, Fan R, Cui Q. HMDD v4.0: A database for experimentally supported human microRNA-disease associations. Nucleic Acids Res. 2024;52(D1):D1327-32. [Link] [DOI:10.1093/nar/gkad717]
17. Pokornowska M, Milewski MC, Ciechanowska K, Szczepańska A, Wojnicka M, Radogostowicz Z, et al. The RNA-RNA base pairing potential of human Dicer and Ago2 proteins. Cell Mol Life Sci. 2020;77(16):3231-44. [Link] [DOI:10.1007/s00018-019-03344-6]
18. Gui R, Li W, Li Z, Wang H, Wu Y, Jiao W, et al. Effects and potential mechanisms of IGF1/IGF1R in the liver fibrosis: A review. Int J Biol Macromol. 2023;251:126263. [Link] [DOI:10.1016/j.ijbiomac.2023.126263]
19. Matthews I, Duong M, Parsons VL, Nozad B, Qizilbash N, Patel Y, et al. Burden of disease from shingles and post-herpetic neuralgia in the over 80 year olds in the UK. PLoS One. 2020;15(2):e0229224. [Link] [DOI:10.1371/journal.pone.0229224]
20. Choudhury A, Ratna A, Lim A, Sebastian RM, Moore CL, Filliol AA, et al. Loss of heat shock factor 1 promotes hepatic stellate cell activation and drives liver fibrosis. Hepatol Commun. 2022;6(10):2781-97. [Link] [DOI:10.1002/hep4.2058]
21. Xu F, Liu C, Zhou D, Zhang L. TGF-β/SMAD pathway and its regulation in hepatic fibrosis. J Histochem Cytochem. 2016;64(3):157-67. [Link] [DOI:10.1369/0022155415627681]
22. Dewidar B, Meyer C, Dooley S, Meindl-Beinker AN. TGF-β in hepatic stellate cell activation and liver fibrogenesis-updated 2019. Cells. 2019;8(11);1419. [Link] [DOI:10.3390/cells8111419]
23. Steen EH, Wang X, Balaji S, Butte MJ, Bollyky PL, Keswani SG. The role of the anti-inflammatory cytokine interleukin-10 in tissue fibrosis. Adv Wound Care. 2020;9(4):184-98. [Link] [DOI:10.1089/wound.2019.1032]
24. Manousakis E, Miralles CM, Esquerda MG, Wright RHG. CDKN1A/p21 in breast cancer: Part of the problem, or part of the solution?. Int J Mol Sci. 2023;24(24):17488. [Link] [DOI:10.3390/ijms242417488]
25. Kikuchi M, Morita S, Wakamori M, Sato S, Uchikubo-Kamo T, Suzuki T, et al. Epigenetic mechanisms to propagate histone acetylation by p300/CBP. Nat Commun. 2023;14:4103. [Link] [DOI:10.1038/s41467-023-39735-4]
26. Rubio K, Molina-Herrera A, Pérez-González A, Hernández-Galdámez HV, Piña-Vázquez C, Araujo-Ramos T, et al. EP300 as a molecular integrator of fibrotic transcriptional programs. Int J Mol Sci. 2023;24(15):12302. [Link] [DOI:10.3390/ijms241512302]
27. Scafuro M, Capasso L, Carafa V, Altucci L, Nebbioso A. Gene transactivation and transrepression in MYC-driven cancers. Int J Mol Sci. 2021;22(7):3458. [Link] [DOI:10.3390/ijms22073458]
28. Susorov D, Zakharov N, Shuvalova E, Ivanov A, Egorova T, Shuvalov A, et al. Eukaryotic translation elongation factor 2 (eEF2) catalyzes reverse translocation of the eukaryotic ribosome. J Biol Chem. 2018;293(14):5220-9. [Link] [DOI:10.1074/jbc.RA117.000761]
29. Komoll RM, Hu Q, Olarewaju O, Von Döhlen L, Yuan Q, Xie Y, et al. MicroRNA-342-3p is a potent tumour suppressor in hepatocellular carcinoma. J Hepatol. 2021;74(1):122-34. [Link] [DOI:10.1016/j.jhep.2020.07.039]
30. Zhao L, Zhang Y. miR-342-3p affects hepatocellular carcinoma cell proliferation via regulating NF-κB pathway. Biochem Biophys Res Commun. 2015;457(3):370-7. [Link] [DOI:10.1016/j.bbrc.2014.12.119]
31. Moraes VN, Queiroz AL, Martone D, Rodrigues JAL, Gomes MM, Salgado JÚnior W, et al. Relationship between the hsa miR 150-5p and FTO gene expression in white subcutaneous adipose tissue with overweight/obesity, lipid profile and glycemia. An Acad Bras Cienc. 2020;92(4):e20200249. [Link] [DOI:10.1590/0001-3765202020200249]
32. Chen W, Yan X, Yang A, Xu A, Huang T, You H. miRNA-150-5p promotes hepatic stellate cell proliferation and sensitizes hepatocyte apoptosis during liver fibrosis. Epigenomics. 2020;12(1):53-67. [Link] [DOI:10.2217/epi-2019-0104]
33. Yang A, Mottillo EP. Adipocyte lipolysis: From molecular mechanisms of regulation to disease and therapeutics. Biochem J. 2020;477(5):985-1008. [Link] [DOI:10.1042/BCJ20190468]
34. Liu B, Dai Z. Fatty acid metabolism in endothelial cell. Genes. 2022;13(12):2301. [Link] [DOI:10.3390/genes13122301]
35. Wang S, Zha L, Cui X, Yeh YT, Liu R, Jing J, et al. Epigenetic regulation of hepatic lipid metabolism by DNA methylation. Adv Sci. 2023;10(20):2206068. [Link] [DOI:10.1002/advs.202206068]
36. Li N, Li X, Ding Y, Liu X, Diggle K, Kisseleva T, et al. SREBP regulation of lipid metabolism in liver disease, and therapeutic strategies. Biomedicines. 2023;11(12):3280. [Link] [DOI:10.3390/biomedicines11123280]
37. Brandt C, McFie PJ, Vu H, Chumala P, Katselis GS, Stone SJ. Identification of calnexin as a diacylglycerol acyltransferase-2 interacting protein. PLoS One. 2019;14(1):e0210396. [Link] [DOI:10.1371/journal.pone.0210396]
38. Cheng Y, Huang L, Ping J, Chen T, Chen J. MicroRNA-199a-3p attenuates hepatic lipogenesis by targeting Sp1. Am J Transl Res. 2017;9(4):1905-13. [Link] [DOI:10.1016/S0168-8278(18)30909-7]
39. Lee S, Mardinoglu A, Zhang C, Lee D, Nielsen J. Dysregulated signaling hubs of liver lipid metabolism reveal hepatocellular carcinoma pathogenesis. Nucleic Acids Res. 2016;44(12):5529-39. [Link] [DOI:10.1093/nar/gkw462]
40. Gao W, Wang Y, Liu S, Li G, Shao Q, Zhang C, et al. Inositol-requiring enzyme 1α and c-Jun N-terminal kinase axis activation contributes to intracellular lipid accumulation in calf hepatocytes. J Dairy Sci. 2024;107(5):3127-39. [Link] [DOI:10.3168/jds.2022-23189]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.